首页> 外文OA文献 >Design of Robust Adaptive Beamforming Algorithms Based on Low-Rank and Cross-Correlation Techniques
【2h】

Design of Robust Adaptive Beamforming Algorithms Based on Low-Rank and Cross-Correlation Techniques

机译:基于低秩和maTLaB的鲁棒自适应波束形成算法设计   互相关技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work presents cost-effective low-rank techniques for designing robustadaptive beamforming (RAB) algorithms. The proposed algorithms are based on theexploitation of the cross-correlation between the array observation data andthe output of the beamformer. Firstly, we construct a general linear equationconsidered in large dimensions whose solution yields the steering vectormismatch. Then, we employ the idea of the full orthogonalization method (FOM),an orthogonal Krylov subspace based method, to iteratively estimate thesteering vector mismatch in a reduced-dimensional subspace, resulting in theproposed orthogonal Krylov subspace projection mismatch estimation (OKSPME)method. We also devise adaptive algorithms based on stochastic gradient (SG)and conjugate gradient (CG) techniques to update the beamforming weights withlow complexity and avoid any costly matrix inversion. The main advantages ofthe proposed low-rank and mismatch estimation techniques are theircost-effectiveness when dealing with high dimension subspaces or large sensorarrays. Simulations results show excellent performance in terms of the outputsignal-to-interference-plus-noise ratio (SINR) of the beamformer among all thecompared RAB methods.
机译:这项工作提出了用于设计鲁棒的自适应波束形成(RAB)算法的经济高效的低秩技术。所提出的算法是基于对阵列观测数据与波束形成器输出之间互相关性的利用。首先,我们构造了一个大尺寸的线性方程组,其解产生了转向矢量不匹配。然后,我们采用基于正交Krylov子空间的全正交化方法(FOM)的思想,迭代地估计降维子空间中的转向矢量失配,从而提出了正交Krylov子空间投影失配估计(OKSPME)方法。我们还设计了基于随机梯度(SG)和共轭梯度(CG)技术的自适应算法,以较低的复杂度更新波束成形权重,并避免了任何昂贵的矩阵求逆。提出的低秩和失配估计技术的主要优点是它们在处理高维子空间或大型传感器阵列时的成本效益。仿真结果表明,在所有比较的RAB方法中,波束形成器的输出信号与干扰加噪声比(SINR)方面均表现出色。

著录项

  • 作者

    Ruan, H.; de Lamare, R. C.;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:[email protected]

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号

OSZAR »